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The recent work of Sinanoglu upon pair-correlated wavefunctions is considered. We derive the conditions 
required for his wavefunction to be a spin singlet, and then relate these conditions to his theory. In particular, 
we show them to be satisfied to an approsirnation consistent with those used in deriving his “esact pair” 
theory. An error in the original integral breakdown is also pointed out and shown to have little effect on the 
results of the theory. - 

1. INTRODUCTION 

HE recent work of Sinanoglu has revived interest T in the possibility of treating electronic correlation 
in atomic and molecular systems by the specific intro- 
duction of pair correlation functions into the total wave- 
function of the system. The value of such an approach 
for the case of two-electron systems has been known 
since the pioneering work of Hylleraas,2 and it surely 
has occurred to many investigators that its application 
to larger systems might be useful.8 The difficulty here- 
tofore has been the apparent intractability of the re- 
sulting mathematics: once one introduces pair correla- 
tion functions into a wavefunction, the energy asso- 
ciated with the wavefunction contains several integral 
terms each involving more than one pair function. As- 
suming as a starting point a restricted Hartree-Fock 
calculation for dosed shell systems and making particu- 
lar use of a corollary of Brillouin’s theorem: due to 
Moller and Plesset,” Sinanoglu has indicated that such 
terms can be expected to make small contributions to 
the energy. If the approximation is then made of 
ignoring these terms, the variation problem of deter- 
mining the set of pair-correlation functions then sepa- 
rates into a set of independent variation problems, one 
for each pair-correlation function. Sinanoglu has sug- 
gested that the latter simpler problems be used to 
determine the pair functions. However, the following 

* Supported in part bv NASA Contract No. NAS 7-100. 
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Proc. Roy. SOC. (London) A260,379 (1961); (c) Phys. Rev. 122, 
491. 493 (1961). ’ E. A. HylLraas, Z. Physik 54,347 (1929). ’ C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32, 191 
(1960); C. C. J. Roothaan and W. Kolos, ibid., 32,205 (1960); 
for further reference see K. Kumar, Perturbation Theory and the 
Nuclear Many Body Problem (North-Holland Publishing Com- 
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C. Moller and G. Plesset, J. Appl. Phys. 46, 618 (1934). 
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question now arises: The symmetry properties of a 
wavefunction are properties of the wavefunction 
overall, and not just of parts of the wavefunction. If 
various parts are determined independently of one 
another, will the over-all wavefunction then exhibit 
the appropriate symmetries? In  this paper we examine 
this question for a particularly important case; viz., 
we ask what conditions must be satisfied by the pair- 
correlation functions in order that the overall wave- 
function be a spin singlet, and to what extent the 
prescription given by Sinanoglu gives rise to pair corre- 
lation functions satisfying these conditions. The ap- 
plication of our method of approach to states of higher 
multiplicity is straightforward enough, but we do not 
consider it, since it would only complicate the discus- 
sion without adding any new insights. Similarly, we do 
not discuss other symmetry properties, e.g., angular 
momentum in atoms. -W-e only remark that for any 
given system, questions similar to those we have 
phrased above must be asked for each symmetry 
property that the system possesses. 

In the following sections, we explicitly discuss the 
singlet state of a four electron system, e.g., the Be 
atom or the LiH molecule. In  point of fact, the results 
we derive are much more general, being applicable to 
any closed-shell singlet state generated by adding pair 
correlation terms to a restricted Hartree-Fock func- 
tion. Inasmuch as larger systems require cumbersome 
notation, we omit general proofs (although we quote 
the results of such proofs below), and concentrate on 
the above-mentioned four-electron systems. The struc- 
ture of the more general proof should become apparent 
to the reader from what follows. 

In Sec. 2, we restate, for reference, Sinanoglu’s’ 
basic ideas. In Sec. 3, we derive the spin conditions 
which his wavefunction must satisfy. In Sec. 4, we 
relate these conditions to his theory, and show, to the 
extent possible in an abstract analysis, the degree tc! 
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which these conditions are satisfied. The final word, 
we see, depends upon a numerical analysis which has 
not yet been performed. We regard the primary func- 
tion of this paper as a stressing of the need for examina- 
tion of symmetry properties in theories involving pair 
correlated wavef unc tions. 

Finally, an Appendix is included in which we correct 
an error in the analysis of integrals contained in Ref. 
1 (a). This correction leads to terms of sniall magnitude 
which do not appear to affect the general conclusions 
of that theory. 

2. REVIEW OF THE PAIR THEORY' 

We consider a wavefunction 

G=4o+x.+x8., (1) 
where $0 is a four-electron restricted Hartree-Fock 
singlet wavefunction, i.e., a single determinant 
wavefunc tion 

40=(4 ! ) -~de t{ l ( l ) ,  2 (2) ,3(3) ,4(4)} .  (2) 

The numbers 1, 2, 3, 4 refer to the four orthonorinal 
Hartree-Fock spin orbitals. Thus, for the Be atom, 
1, 2, 3, 4 mean the lsa, Is@, 2sa, and 2s@ spin orbitals, 
respectively, whereas for thc LiH molecule 1, 2, 3, and 
4 mean the lsLia, 1sL& lua,  and 1up spin orbitals, 
respectively. We assume thcsc orbitals to be known 
from a previous Hartree-Fock calculation (as, indeed 
they are for the specific examples cited The 
first pair-correlation term xs in (1) is given by8 

xi = 2-Q( &( 1, 2) 3 (3) 4(4) +fin( 1 , s )  2 (2) 4 (4) 

+&( 1, 4) 2 (2) 3 (3) S & 3 (  2,s) 1 ( 1) 4( 4) 

+22~(2,4)1(1)3(3)$&4(3,4)1(1)2(2) 1, (3) 

where U is the four-particle antisynimetrizer and 
&(i, j )  is the antisymmetric pair correlation function 
between orbitals i and j .  In keeping with the sugges- 

tions of Ref. 1, these functions are chosen so as to be 
strongly orthogonal to the occupied Hartree-Fock 
orbitals, i.e., the dij's are chosen so as to satisfy the 
conditions 

( z i i j ( i , j ) K ( i ) d ( i )  = ( & j ( i , j ) k (  j ) d (  j )  =0, (4) 
J J 

where K=l, 2, 3, or 4, and J-..d(i) denotes space 
integration plus spin summation over the coordinates 
of Electron i. At this point, the pair correlation func- 
tions are unknown, and it is the general purpose of the 
theory to determine them. The second correlation term 
in (1) is given by 

xes=@(&z(1, 2)&,4(3, 4) +di3(1,3)&4(2,4) 

+a14(1,4)&(2,3) 1, ( 5 )  
and so does not contain any pair functions not already 
contained in xs. The energy of the wavefunction (1) is 

where 
E= (+ la I+>/(+ I + > ,  ( 6 )  

is the Hamiltonian of the system (here and throughout 
this paper, we use atomic units: l i = m = e = l ) .  The 
s!im over a in (7)  is over the nuclei, whose charges are 
zu, and the other symbols have their ilqiial meanings. 
The key step in Ref. 1 lies in replacing the exact ex- 
pression (6) by the approximation 

EZEHF+ CCEij', ( 8) 

(9) 

i j i < & 4  

where EHF is the Hartree-Fock energy, i.e., is given by 

E I l F =  ($0 I a 1 $0>/(40 I 40>, 
and is, therefore a constaid in what follows. In (8), e;; 
is the "exact pair energy" for the pair of orbitals i, j .  
This quantity is given by 

where 
@(i,j)=2-'(i(i)j(j) - i ( j ) j ( i )  1 (111 

is an antisymmetric two-particle function, and the 

6 C .  C .  J. Koothann, 1,. hf. Sachs, and A. W. Weiss, Rev. Mod. 
Phys. 32, 186 (1960); K. E. Watwn, l'hys. Kcv. 119, 170 (1960). 

S. L. Kahalas and I<. K. Nesbet, J. Chem. I'hys. 39, 529 
(1963); A. M. Karo, ibid. 30, 1241 (1959); B. J. Ransil, Rev. 
Mod. Phys. 32, 239 (1960). 

OHere and throughout this paper the subscripts such AS 12 
should be interpreted as 1, 2,-i.e., as referring to Orbitals 1 and 
2. (and similarly for 13, 14, etc.). The commas are omitted to 
simplify the typography, 

operators e; and mij are defined as follows: 

I- 2 I 01 1u e;; (12) e .= - 'V "+ cz ?. . -1+ vi- 

rn..=I..-l-s.( $1 $1 1 3 ' ) - S . (  -3 i)+ J<j-Kij ,  (13) 
a 

- 

where e i  is the Hartree-Fock orbital energy of orbital 
i, and J;j and K;j arc the Coulomb and exchange inte- 
grals for orbitals i and j ,  i.e., 

JijE (i(i)j( j )  I r;j-' I i(i)j( j )  ), 

K i j z  (i(i)j( j )  I ~ ; j - '  l j ( i ) i (  j )  ). 

(14) 

(15) 
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Thus e(, Jij, and Kij  are constants whose values are 
known from the Hartree-Fock calculation of 40. Next, 
in (13), the integral operator & ( j )  represents the 
Hartree-Fock potential upon electron j due to orbital 
i, and is defined by 

si( j )  =/i(i) rij-’( 1 - Pij) i(i) d ( i )  , (16) 

where Pij is the permutation operator which permutes 
space and spin coordinates i and j .  It is understood to 
operate prior to the integration over the coordinates 
(i) . Finally, the operator Vi in (12) is the total Har- 
tree-Fock potential acting on electron i, and is usually 
defined by 

4 

V , ( i ) = C S j ( i )  ( i = l ,  2, 3,4). (17) 
j=1 

In  a well-known way, the presence of the factor 
(1- Pij) leads to a cancellation of the direct and ex- 
change parts of (16) whenever & ( j )  acts upon i ( j ) ,  
Le., the identity 

S i ( j ) i ( j ) ~ O  ( i=1 ,2 ,3 ,4 ) ,  (18) 
holds. This means that as far as the determination of 
the Hartree-Fock states is concerned, the definition 
(17) can equally well be written as 

4 

V i ( i ) ~ x ’ & ( i )  (i=l, 2,3, 4), (19) 

where now the prime means that the term j = i  is 
omitted from the sum. In those cases where Vi  operates 
upon functions other than the Hartree-Fock function, 
the two definitions (17) and (19) are different, and a 
choice must be made. The definition (13) of the 
“correlation potential” used in Ref. 1 is consistent with 
the use of (19) rather than ( i i j .  AiieIiiiitii-e~, if CI?P 

uses (17) to define the Hartree-Fock potential, it 
becomes necessary to define the correlation potential 
not by (17), but rather by 

+1 

mij=r;j-’- 8;( j )  - Sj(i) - S;( i )  - S j ( j )  + ~ i j - ~ ; j ,  

( 20) 
for consistency. Either choice of definition, Le., either 
(13) and (19) or (20) and (17) lead to the same final 
result. We only mention these two alternatives here 
so that the reader be cognizant of this point. 

For further details of the basic theory, the reader 
may consult Ref. 1. The essential point of interest 
here is the expressions (8), (9), ( lo) ,  in which one 
sees that the energy associated with the wavefunction 
(1) has been approximated by a sum of terms (10) 
each of which is a junctional of one and only one pair 
function dij. Thus, the determination of any pair 
function is independent of the determination of every 
other pair function, with all necessary definitions 

given in terms of known quantities by (11) through 
(16) and by (19). 

Finally, we should note that Sinano$P has also 
suggested that when the correlation between a pair of 
orbitals is weak, Le., when 

that the expression (10) may be further approximated 
by 
~ i j ’ g 2  (B (i, j )  1 mij 1 6ij (i, j )  ) 

+ (dij(i7j) 1 ei+ej [ dij(i7-i) ). (22) 
It should be remarked that the form (22) is one 

which can be obtained by making a perturbation ex- 
pansion about the Hartree-Fock state. Using the per- 
turbation-variation approach to determine the first- 
order wavefunction (which is now given by xs in our 
notation), one finds that it is necessary to minimize 
independent pair energies of exactly the form (22). 
Inasmuch as it is easy to show that perturbation theory 
wavefunctions of any order satisfy the same symmetries 
as the zeroth order wavefunction (which is here 40), 
one knows that the usc of (22) automatically will 
generate the appropriate symmetries, provided only 
that the trial pair functions dij have sufficient flexibility. 
Because of this, it is not necessary to consider (22) 
further, and our discussion will center upon the “exact 
pair” form (10). 

The question stated in the introduction now arises: 
if we use (10) to determine the 6$g, Le., by independent 
variation of each E,/ with respect to the corresponding 
dij, how can we be sure that the symmetry require- 
ments upon the total wavefunction (1) , which depend 
simultaneously upon dl of the dij’s, be satisfied? To 
see what this question means with respect to spin, we 
first must see what restrictions, if any, are placed upon 
the pair correlation fUxti~111 d;j hy the requirements 
that 9 satisfy the conditions for a spin singlets: 

sy=o, (23) 

s,+ = 0. ( 24) 

3. SPIN CONDITIONS 

The condition of the strong orthogonality (4) has a 
simple and useful interpretation in the language of 
configuration interaction. Briefly stated, it is that each 
d ,  can be written in the form 

di j ( i , j )  = y CUij”k(i)Z( j ) ,  (25) 
k25 125 

where the a’s are constants. The sum in (25) contains 
only so-called “double-ex~itation~~ terms, i.e., terms in 
which both orbitals k and I are excited (unoccupied) 

@ A  similar method of spin analysis has been applied by A. 
Brickstock and J. A. Pople, Phil. Mag. 44, 697 (1953). 
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Hartree-Fock orbitals. ‘I’he cuntlition (4) specifically 
rules out the appearance of “single-excitation” terms 
of the type where k 1 4  and 1 2 5  or vice versa, and the 
over-all antisymmetry of the wavefunction rules out 
other single excitation terms. The “zero-excitation” 
terms k = i ,  l=j  and k = j ,  Z = i  are ruled out by the 
trivial requirement that xs and xs8 be orthogonal to 
+”, and at  niost renormalize the wavefunction (1).  
Thus, (25) is the most general form of the &j’s needed 
to satisfy (4).  Therefore, the three terms 40, xs, and 
xSs of (1)  are, respectively, zero-excitation, double- 
excitation, and quadruple-excitation terms. This means 
that in 4” all four electrons occupy the lowest two space- 
orbitals, in xS two electrons are in the lowest two space- 
orbitals, and in xsS no electrons are in the lowest two 
space orbitals, so that the three terms c#J~ ,  xs, and xlls are 
mutually orthogonal iiz space alone. As a consequence 
each separately must satisfy (23) and (24).  We have 
of course already chosen 40 to satisfy these criteria, so 
it need not be considered further. Let us therefore 
examine the meaning of the requirements 

9 x 8  = 0, (26) 

s*xa = 0 (27) 

which xll must by itself satisfy. (We then return to x . ~ . )  
The condition (27) is trivial. The most general forms 

which satisfy it are given b). 

dlZ(1, 2) =2-%p12(1, 2 )41 )P(2 )  ; 

dia(1, 3 )  =2-’@13p13(1,3)(~(1)~~(3); 

&(I, 4) =2-’@14$~(1, 4 ) (~ (1 )@(4) ;  

&(2, 3) =2-’@23$xi(2,3)P(2)a(3) ; 

&4(2,4) =2f@324p24(2,4)8(2)P(4) ; 

&4(3,4) =2-*@3&4(3,4)(~(3)P(4!, (28) 

where the p,j’s are the parts of the ziij’s dependent 
upon the space coordinates. The operators 2-@j in 
(28) select the antisymmetric components of the 
various expressions. The symmetric components are 
not needed, since they would in any case b e  removed 
by the operator Q. in expression ( 3 ) .  Using thc relation 
a@ij=2h,  we then have 

x n  = 2 - b (  l )P (  2) a (3)?( 4) { p12( 1, 2 j 42(3 j 42( 4) 

+$13(1,3)41(2) 42(4) +pii( 1 ,  4)41(2)42(3) 

+$23(2, 3) 41 ( 1) 42(4) +p24 (2, 4) 41 ( 1) 6 ( 3 )  

+~34(3,4)41(1)41(2) I ,  
where $1 and 4 2  are the two space orbitals, e.g., c$~ = 1s 
and 42=2s for Be; and and +2=1u for LiH. 
Summing (4) over spin, the strong orthogonality 

lwcon ies 

where k =  1 or 2 and J’. - . d ( i )  means integration over 
space coordinates of (i). In  terms of configuration 
interaction, this means that each f i l l  may be written 
in the form 

p J i , . j )  =E Ebplk14k(i)41(.h (31) 
ktJ 123 

which is the space-only analog of (25), the b’s of (31) 
being constants and the 4’s the excited (unoccupied) 
Hartree-Fock space orbitals. 

From (29) and (31), one sees that the tern1 of (29) 
containing p12 is orthogonal in space alone to the re- 
maining terms of xR. As a result this term separately 
must satisfy 

s2 2-‘aa ( 1)P (2) a (3)P 14) p i 2 (  1, 2) 42(3) h ( 4 )  1 =o (32) 

if xS is to satisfy (26). If we write p12( 1, 2) as a sum of 
a symmetric and an antisymmetric part 

P d l ,  2) =plzS(l, 2)+p1zA(1, 21, (33) 
where 

plzS(l, 2) =p1zS(2, 1) ;  

pnA(l,  2) =-p1zA(2, 11, 
1 (34) 

then i t  is well known and easy to prove that the p12’ 
part gives rise to a singlet whereas the p1ZA part gives 
rise to a triplet. Thus, to satisfy (26) , we must choose 
p12* =O. Similarly, we conclude p34A =O. More generally, 
for an N-electron system in a singlet state generated 
bjr excitations from a state with two electrons per space 
orbital, we must always have 

p2, -1 ,241 ,  2) =p242r(2, 11, ( 3 5 )  

i.e., the pair correlation function for the two electrons 
in the same space orbital is always a symmetric func- 
tion with respect to coordinate interchange. This 
result, though important in applications, is not of 
particular interest here. It is when we turn to the 
remaining terms of xa, Le., those involving $13, $14, $23, 

and pZ4 that more interesting results appear. Because 
these terms are not orthogonal in space to each other, 
they must be treatcd as a group. 

Assuming that $12 and p34 are chosen symmetric, 
then Condition (26) reduces identically to the criterion 
that the quantity 

LvE S2Qa( 1)P(2) a(3)P(4)  { p13( 1, 3) 4i(  2)$2(4) 

+p14(1,4)41(2)42(3) +$23(2, 3)41(1)42(4) 

+$24(2, 4)6(1)42(3) 1 (36) 

vanish identically. It is convenient to analyze the 
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product in terms of the six four-electron bond 
eigenfunc tions.'O 

e l l = ~ p ~ p - p ~ ~ p - u p p ~ + ~ ~ 3 c u p ~ ,  
el2=~~pp--cwpcVp-p~p~+p~~~, 
e31 = a ~ a p - p ~ a p + c - o g a ,  
eS2 = a 4 3 p - a w + ~ a ~ - ~ ~ a a ,  

e33 = a ~ a o + ~ a ~ p - - ~ a - ~ ~ a ,  

esl = ~ ~ ~ p + ~ p ~ p + p ~ ~ p + c ~ ~ ~ a r + P + f P P ~ a ,  (37) 

where apap means a(l)/3(2)a(3)/3(4), etc. Of these 
ell and 012 are singlets, e31, e32, e33 are triplets, and Os1 is 
a quintet. One easily finds 

= i(e11-e12) +t (e31+e33) +$esl, (38) 

the triplet 032 not appearing. 

the form 
Since s2 and @ commute, it is easy to reduce (36) to 

W= a[$ (@31+e33) +e611{p13A ( 4 3 )  41(2)+2(4) 

(2,4) #I ( 1) 42 (3) +p14' ( 1,4) 41 (2) d?z (3) 

+pldA ( 1 ,4 )  41 (2) h ( 3 )  +p23' ( 2,3)  4i( 1) h ( 4 )  

+$28A(2,3)@i(1)42(4) 1, (39) 

where we have again split the pij's into symmetric and 
antisymmetric parts similar to (34). We note that the 
terms p13' and $24' do not appear, as they are projected 
out by the operators a313 and a 2 4  in (28). In  order to  
reduce (39) to a useful form, it is necessary that all 
p;i)s contain the same coordinates, that all 41's contain 
the same coordinate, and that all 4;s contain the same 
coordinate. Let us choose to write each term in the 
bracket in (39) in the form p(1, 3)41(2)&(4) so that 
the first term already is suitable. Consider now the 
second term. Using the operator identify 

a= P12P&, (40) 

the commutability of the permutation operators Ptj 
with the antisymmetrizer a, and the fact that the effect 
of a permutation operator acting upon a function of 
space and spin is the direct product of the permutation 
of the space coordinates with that of the spin coordi- 
nates, the following identity is easily established: 

a [ 3 ( e 3 1 + 0 3 3 >  +e611p24A (2, 4)41( 1)&2(3) 

=a[- $ (e3i+e33) +e,l]p24A (1,3)41( 2) +z( 4) .  (41) 

Similar manipulations may be performed upon the 
remaining terms of (39), and lead to rewriting (39) 

lo H. Eyring, J. Walter, and G.  E. Kimball, Quantum Chemktry 
(John Wiley & Sons, Inc., New York, 1944), Chap. 13. 

in the form 

JV= c t ~  = - $@(e3,- e33) 
X[pi4'(1,3)-pp23'(1, 3)--14~(1,  3 ) + p ~ 3 ~ ( 1 , 3 ) 1  

~ d ~ ( 2 ) 4 ~ ( 4 ) + a a ( e ~ , + e ~ ~ > ~ ~ ~ ~ ( 1 , 3 )  -pMA(l,  311 
X41(2)d?z(4) + a s 1  

X[p13~(1, 3)--14~(1, 3)-#'~3~(1,  3 ) + p ~ 4 ~ ( 1 , 3 ) 1  
Xd~1(2)+2(4>, (42) 

where Q is the spin-space function which stands to the 
right of a. Of all the 4!  permutations of Q introduced 
by a, we need only consider the two given by (1  - P13). 

This is because all other permutations give rise to 
terms which are orthogonal in space alone to Q itself, 
so that W will vanish identically if and only if (1 - P13) Q 
vanishes identically. Using (37) and (42), we easily 
find 

( 1- Pia) Q= - (e3i+e32) 4 3 )  -p23'( 1,3)  I 
x41(2)42(4) - (e32+e33)cp14A(1, 3 ) - ~ 2 3 ~ ( 1 , 3 ) 1  

x41(2)42(4) + (831+@33) [piaA ( ~ 3 )  - P~~~ ( A 3 )  1 
x41(2)42(4) +2esl[plav, 3) -pl%(h 3) 

- p d ( l ,  3 ) + p ~ 4 ~ ( 1 ,  3)]41(2)4~(4).  (43) 

Inasmuch as the four spin functions 031+032, 031+033, 
e32+e33 and 061 in (43) are linearly independent, it 
follows that (l-Pl3)Q (and hence W )  can vanish 
identically if and only if the four space function co- 
efficients in (43) separately vanish. Thus, since 
+1(2)42(4)#0 we see that (26) holds if and only if 
the following relations are satisfied: 

pid'(1, 3) =&3'(1, 3),  (44) 

C" n , . A ( l .  \ - I  3 )  -, =pz$(l 3 )  (4.5) 

fnA( l ,  3) =pzP(1, 31, (46) 

pisA ( 1,s) -p14A ( 1,3) - ( 1 , s )  +p24A ( 193) =o. (47) 

The three relations (44), (45), (46) are hardly 
surprising: they are simple consequences of the physical 
symmetry of the wavefunction and could have been 
guessed without any analysis. For example, (46) states 
that the space part of the lsa-2sa correlation function 
(for Be) is the same as the space part of the l s ~ 3 s p  
correlation function. In  terms of the vector model, it 
states that we can add two triplet correlation functions 
[Ref. 431 so as to form a singlet. The relation (47) is 
more interesting: it states that we can add four quintets 
to form a singlet, which is, again, not surprising. How- 
ever, unlike (44) ,  (45), (46), it does not appear that 
(47) might have been guessed without the analysis 
given here. We also note that (44) and (45) can be 
used to rewrite (47) as 

piaA(l, 3) =pi/(1, 31, (48) 
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which is the primary result we have sought in this 
section. The implication of (44) to (47), and particu- 
larly (48), is that the four pair correlation functions 
between two different orbitals are not independent, 
but must be interrelated because of the spin character 
of the complete wavefunction. In the next section, we 
will see what this means in terms of the independent 
pair variation implied by (10). 

Now we must examine the quadrupole excitation 
term xsa of (1). Here the situation is very simple. We 
substitute the relations (44) to (46) and (48), plus 
the requirements that p12 and be symmetric into 
(28), and then substitute (28) into ( 5 ) ,  so as to write 
xa in terms of the pijS and p i p .  We then operate upon 
xas with S2. We find, by straightforward and simple 
algebra, which we omit for brevity, that S2xs,=0. That 
is to say, the conditions (44) to (46) and (48) not only 
guarantee that xa is a singlet, but they also guarantee 
that xss is a singlet as well! Thus, these are the only 
conditions placed upon the pair functions by the re- 
quirement that $ be a singlet, a t  least for the four 
electron problem. 

If N>4, we note that relations like (44) to (48) 
may be derived for the pair correlation functions (we 
omit the proof, which is similar to that above). These 
relations are summarized in TablclI. If the pair func- 
tions satisfy these relations we are guaranteed that the 
wavefunction # = ~ O + X ~ + X . ~  is a spin singlet. 

4. RELATION OF SPIN CONDITIONS TO PAIR THEORY 

Let us now investigate whether the Sinanoglu 
"exact pair" energies (10) lead to (44) to (46) and 
(48) for a sufficiently flexible variation function. If 
the "exact" energies (10) are written in terms of the 

and p, jA and the spins are summed out, we im- 
mediately obtain (44) to (46) for the intershell func- 
tions. This follows from the fact that the pairs of equal 
functions of (44) to (46) satisfy the same equations. 
The symmetric nature of the iizlrashell spatial correla- 
tion functions is obvious. For example, consider the 
d1, correlation function. Although it can have both 
singlet and triplet spin components, only the singlet 

component can mix with 4" and thereby lower the 
energy. This implies that the p1ZA part must vanish to 
minimize the energy. 

At this point, we are still left with the question as to 
whether or not independent variation of d13 and $14 

meets the criterion (48). To answer this, we must 
specifically work out the 1, 3 and 1, 4 terms of 
Sinanoglu's "exact pair" energies (10) making use of 
the decomposition (28) plus the decomposition of the 
pij into symmetric and antisymmetric parts. Thus we 
consider the terms 

2(@(1,3) I m13 1 ai,)+ ($13 I el+es+m13 1213). 
€13' = > (49) 

* (50) 
2 ( ~ ( 1 , 4 )  I m14 I d14)+(dl4 I el+e4+ml4 1 dl4) 

€141 = 
1+ ($14 I $14) 

The necessary and sufficient conditions that (48) be 
satisfied are: 

must be a sum of two parts, the first a func- 
tional of p14' and not of p14A, and the second a func- 
tional of pl4* and not of p14'. 

must 
be the same functional of as €131 is of except 
possibly for a constant multiplicative factor, whose 
value is immaterial. Substituting (28) into (49) and 
(50), we find, after sonic algebra, that 

1+ ($13 1 $13) 

(A) 

(B) The part of e14) which is a functional of 

€13)=N13/A13, (51) 

€141 = 13'14/A14, (52) 
where 

nri3=2(@i3@i(1)'#J2(3) I rl3-I 1 p13A(1, 3 ) )  

+(J13-k-13) (f13A(1, 3) I p13A(1, 3, ) 

+ (p13"(1, 3) 1 T (  1) + 7 ( 3 )  --1--3+r13-1 1 f13A(1, 3) ) 

+ (#ixA(1, 3)41(2) 1 riz-'+r~3-~ I p13'(1, 3)41(2) ) 

+ (fhA(l, 3)42(4) I ri4-'+r~-~ I f13A(1, 3)42(4) ), (53) 

Ni4 = Ni4A+Ni4S+N~4AS, (54) 
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In these expressions, all integrations are over space 
alone; &=24(1-Pij) and Cij=2-4(l+P;j) are the 
two-particle antisymmetrizer and symmetrizer, re- fi(p) =2(@1341(1)42(3) 1 rl3-l I p(l ,  3) ) 
spectively, acting in space alone, and the operator 

To see this, we introduce the functiona2s 

+ ( p (  1, 3) I T (  1) +7(3) - - e ~ - % b i a - ~  \ p(1, 3) ) 

is the kinetic energy plus nuclear attraction for Electron 
i in atomic units. Utilizing the relations e3=e4 and 
J 1 3 =  J 1 4  we see that most of the terms of N13 are func- 
tionally equivalent to N14A; nevertheless, the two ex- 
pressions are not functionally identical. In  addition, 
the term N14AS which occurs in N14 has no counterpart 
in N13. Finally, the denominators Ala and A14 are not 
functionally identical. Consequently, independent vari- 
ation of a13 and 214  cannot satisfy (24) exactly. On the 
other hand, it appears that the discrepancy is small. 

In  arriving a t  the expressions for €131 and ~141, 

Sinanoglula made two key approximations, viz., (1) 
The range of the correlation functions dij is short (the 
range of the 8, naturally is the range of the space 
parts p;j of the dij's). (2)  The magnitude of the corre- 
lation terms xa and x18 are much less than that of 40, 
the Hartree-Fock term. 

Using these approximations, we can simplify (65) : 
First, using (1) one finds that the term N1%'/&4 in 
(65) is negligible compared to the other terms. Second, 
using (2) we can neglect the term 

$1 (p14s(1, 4, I p14'(1, 4) >- (p14A(1, 4) 1 p14A(1, 4) > I  
in the remaining denominators, since i t  will be much 
less than el. Thus (65) reduces to 

TABLE I. Relations between pair functions for singlet states. 

Pair Symmetric Antisymmetric Special 
function space part space part relations 

so that Condition (A) above is satisfied. We also see 
that Condition (B) is satisfied, with the multiplicative 
factor equal to 4, providedjz is negligible in comparison 
withfl. Examination of (61) and (62) shows that this 
is probably true : using Sinanoglu's two assumptions ail 
three terms of f2 are small, Le., they are of the type he 
neglected in obtaining the expressionla for e;;. The 
terms of f1, on the other hand, cannot all be neglected 
by use of the two approximations. I n  particular, we 
notice that j 1  includes among others all the terms 

which is known to yield the intershell correlation 
energy" to high accuracy. This indicates that it is 
very likely true that the conditions s Y , = O ,  S.+=O 
are satisfied to an order of approximation equivalent 
to that made in obtaining the energy expressions (S), 
(9), and (10). 

I t  should be remarked that arguments of the above 
type cannot be expected to be absolutely conclusive 
either for arbitrary systems or even for our specific 
examples-the Be atom and the LiH n~olecule. The 
ultimate check is numerical calculation, where our 
anticipation is that these conclusions will prove valid 
for tightly bound systems. 

Finally, we note that an alternate treatment of the 
spin is available. Thus, we can substitute the condi- 
tions (44) to (46) and (48), plus the symmetry of p12 

and p 3 4 ,  into the exact variational energy expression 

. .  t--- ---&.-l.-*:-- tl.,,..., r,,,,,,.,, .&th (99)l all>lll& l l V l l l  pc1 L U l U a L l V l l  LIICVIJ,  Lb"ll.yuLb l.*L*. \--,A, 

"See, e.g., R. E. Watson, Phys. Rev. 119, 170 (1960) for an 
analysis of the Be atom correlation energy and its relation to 
pertiirhntion theory. This problem has also been considered by 
H. Kelly, Phys. Rev. (to be published). 
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for the wavefunction +o+~.+x l l .  prior to making any 
of the approximations which lead to the “exact pair” 
energies. If we do so, we of course are guaranteed that 
the wavefunction has exactly the correct spin properties. 
Following this substitution, an analysis of the energy, 
similar to Sinanoglu’s, can be performed, which leads 
to the same separation into an “exact pair” part plus 
small corrections. 

APPENDIX 

In Sinanoglu’s original breakdown of the energy,’” a 
diagram technique was used to obtain the various 
matrix elements. The term (&(i, j )  1 mij 1 d, j ( i ,  j )  ) 
can be represented diagrammatically, if one draws a 
solid line connecting the points i, j of dij and a dotted 
line for the mij, as 

The remaindeP R then contains the three electron 

I* See Ref. (la), p. 716 for the definition of R. 

linked diagrams 

I 

which for the above particular labeling means 

(i(i)&( j ,  h )  1 ma I k(h)fiij(i,j> >, 
plus additional terms, overlooked by Sinano$h which 
arise from the diagram 

o j  i o  

The example (A3) is the integral 

(&Ai,j) I dkd i , j )  )(W)W I mkl I i ( k ) j ( O  >. 
An estimate of this integral, for the largest term of this 
type in the Be atom, leads to a value of 0.0008 eV, an 
entirely negligible effect.13 Thus the theory does not 
appear to be affected to a significant degree by such 
terms. 

Is 0. Sinanoklu (in a private communication) has obtained 
this value for the integral, based on Watson’s Be analysis (Ref. 
12). 


